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A new multigrid method for convection problems is presented. It is designed to overcome 
the problem of alignment, the flow being aligned with the grid. The technique employs semi- 
coarsening in several directions simultaneously and gives rise to multiple coarser grids with 
the same total number of points per grid-level, but with different sizes in each co-ordinate 
direction. The amount of work per multigrid cycle is still O(N). As an example, the method 
is applied to the nonlinear upwind-differenced Euler equations of gas dynamics in two dimen- 
sions. Convergence rates are estimated by two-level Fourier analysis for the linearised equa- 
tions. Numerical experiments on the nonlinear equations confirm these estimates. 0 1989 

Academic Press, Inc. 

1, INTRODUCTION 

The Euler equations of gas dynamics can be discretised in space by central or 
upwind differencing. The former requires artificial viscosity to avoid oscillatory 
solutions; the latter automatically introduces sufficient viscosity to avoid oscilla- 
tions and allows for an excellent representation of shocks (see [ 181 and references 
therein). Although upwind schemes appear to be superior to central schemes in 
their representation of shocks and robustness, their cost is 4 to 8 times that of 
central schemes. For steady flows, this will not be a serious drawback if solutions 
can be obtained in only a few iterations. 

Near the end of 1982, the author and van Leer investigated the efficiency of 
various relaxation schemes for the upwind differenced Euler equations [22]. A 
similar study was carried out independently by Chakravarthy [3]. In both papers, 
a significant acceleration with respect to conventional methods such as AD1 and 
approximate factorisation was found. However, the convergence factors of these 
schemes are still only 1 - O(h2). 

The success of the relaxation methods inspired a multigrid approach. Con- 
vergence rates independent of grid size were found in early 1983 for a transonic test 
problem with a shock [9]. Both first-order- and second-order-accurate solutions 
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were computed. For the latter, the defect correction technique was used. The 
method was successfully applied to a demanding problem with strong shocks: the 
flow of interstellar gas in a spiral galaxy [lo]. 

Jameson [7] introduced a multigrid method for a central-difference discretisation 
of the Euler equations around the same time. A method for the upwind differenced 
equations, in a number of respects similar to the one in [9], was proposed 
independently by Jespersen [S]. 

Several authors have applied and extended the method proposed by Jespersen 
[8] and Mulder [9]. A nonlinear version has been explored by Hemker and 
Spekreijse [6]. Three-dimensional computations have been carried out by Ander- 
son [ 11. Extensions to the Navier-Stokes equations can be found in [ 19,203. 

Despite these successes, the method sometimes fails. The problem is exposed in 
[13], where the convergence factors for various relaxation schemes and multigrid 
are estimated by two-level Fourier analysis. Convergence is lost in the case of strong 
alignment, the flow being aligned with the grid, which is a well-known problem 
already for elliptic equations with strong anisotropy [2,4]. 

This paper describes a new method that does not suffer from poor convergence 
rates if alignment occurs. It employs semi-coarsening in d co-ordinate directions 
simultaneously, where d is the number of space dimensions. Here we will mainly 
concentrate on the 2-dimensional case. The generalisation to three dimensions is 
obvious. 

Section 2 describes the method in a general way, without reference to a particular 
partial differential equation. Complexity estimates are included. The method is 
applied to the nonlinear Euler equations of gas dynamics in Sections 3 and 4. 
Convergence rates are estimated by two-level Fourier analysis on the linearised 
equations with constant coefficients and periodic boundary conditions in Section 3. 
Numerical experiments on the nonlinear equations, using upwind differencing, are 
carried out in Section 4 for a subsonic, transonic, and supersonic problem. The 
main conclusions are summarised in Section 5. 

2. METHOD 

2.1. Motivation 

The multigrid technique is an efficient numerical method for solving elliptic par- 
tial differential equations. Its convergence rate is independent of the number of grid 
points. In combination with successive grid refinement, or nesting, it can provide 
solutions with an iteration error smaller than the discretisation error in one to three 
multigrid cycles [2,4]. Non-elliptic problems can also be handled, if sufftcient 
numerical ellipticity is present. This means that, on the scale of the grid spacing, 
there is a reasonable amount of coupling between neighboring points or cells. This 
coupling is then exploited to remove oscillatory components of the error by a 
suitable smoother. Here the error is defined as the difference between the correct 
numerical solution and the current guess. 
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The multigrid method fails if this coupling becomes too small in one of the co- 
ordinate directions. We exclude the possibility of total decoupling at some point, 
which means that the solution is undetermined at that point. In a multi-dimensional 
problem, the coupling can become locally l-dimensional. This is a common situa- 
tion in anisotropic problems, such as the elliptic problem u,, + EU,,~ = 0 for E + 0, 
or the problem of computing a steady solution to the hyperbolic convection equa- 
tion u, + au, + bu, = 0 for b + 0, a # 0. In these two examples, the differential 
operator becomes l-dimensional, namely, u,, = 0 for the elliptic example and 
au, = 0 for the hyperbolic problem. Thus the solution will be independent of y, 
unless some structure in the y-direction is imposed by the boundary conditions. A 
proper discretisation will reflect this by being independent from neighboring values 
in the y-direction. Suppose now that the error has an arbitrary structure in the 
x-direction and is highly oscillatory in the y-direction. Restriction to a coarser grid 
will involve some sort of averaging in both co-ordinate directions. The oscillatory 
y-component will cause cancellation, and as a result, this error will not show up on 
the coarser grid and cannot be removed by the multigrid method. It also cannot be 
removed by smoothing on the finest grid, as would normally be done, because there 
is no coupling in the y-component. This component actually must remain unaffected 
if the discrete operator reflects the character of the differential equation. The only 
way to remove the error is by some relaxation scheme acting along the x-direction. 
If the x-component of the error is smooth, this will be an inefficient process. For 
a relaxation scheme that used only local data, the communication of boundary data 
to the interior will take O(N”2) iterations, where ZV’/’ is the number of points in 
the x-direction. Thus, grid-independent convergence rates are lost. 

The problem of decoupling in one of the co-ordinate directions is well known. It 
is called strong alignment by Brandt [2]. A commonly used remedy is based on 
brute force: choose a relaxation scheme that is exact or almost exact in the case of 
alignment. Candidates are global relaxation schemes such as those based on line 
relaxation or ILU. For purely hyperbolic problems, lexicographical Gauss-Seidel is 
a global scheme as well. It becomes a direct solver if the ordering follows the flow. 

The initial success of the multigrid method for the Euler equations of gas 
dynamics proposed in [9], and its failure in certain cases [13], can be explained 
in the above terms. The Euler equations are hyperbolic for supersonic flow and 
elliptic for subsonic. In [9], the relaxation scheme is symmetric Gauss-Seidel, 
which is a poor smoother but a fairly good single-grid solver, although its 
asymptotic convergence rate is still 1 - O(h2). The multigrid method accelerates the 
scheme considerably. However, symmetric Gauss-Seidel cannot handle alignment 
for subsonic flows, and therefore the multigrid method breaks down in that case. In 
practical applications such as transonic flow around an airfoil, using an O-grid, 
alignment only occurs in small regions and the flow is close to supersonic, so the 
method works tine. In subsonic channel flow, on the other hand, alignment is likely 
to occur and convergence will be slow. 

In two space dimensions, the problem of alignment can be overcome by using 
line relaxation. Damped alternating-direction line-Jacobi relaxation provides a 
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uniformly good asymptotic convergence rate of 0.526 per cycle [12]. A disadvan- 
tage of this method is the global linearisation of the residual, required for the line 
relaxation. Also, line-relaxation is generally restricted to simple domains, whereas 
a multigrid scheme with a relaxation scheme that uses only local data, can in 
principle be used on domains of arbitrary shape. 

Another way to solve the problem of alignment is by using semi-coarsening; that 
is, one combines points or cells in the direction of the strongest coupling [2,4]. 
Any oscillatory component of the error in the direction of weak (or no) coupling 
will then be brought to the coarser grid. This approach has not been pursued to its 
full potential. The method presented here uses semi-coarsening in such a way that 
global solvers are no longer required (except on the coarsest grid). 

Semi-coarsening can be implemented in several ways. The simplest approach 
involves coarsening in alternating directions. As an example, we consider a linite- 
volume discretisation on a finest grid of 8 x 8 points. The coarser grid can be 4 x 8 
points, and the next coarser grid 4 x 4 points, et cetera. This method still fails in the 
case of alignment. If the flow follows the x-direction, then the restriction to 4 x 8 
points will not cause any problems, but the subsequence restriction to the 4 x 4 grid 
will still cause oscillatory errors in the y-direction to cancel, whereas smoothing in 
the y-direction cannot be achieved in the absence of coupling. Thus, this approach 
is fruitless. 

A second approach is based on semi-coarsening in two direction simultaneously. 
From one finest grid of 8 x 8 points, two coarser grids, one of 4 x 8 and one of 8 x 4 
points, are obtained. On the next level, four grids are created, et cetera. In this way, 
the total number of grids is doubled after each restriction, and the total number of 
points in all grids on each level remains constant. The amount of work for a V-cycle 
is O(Nlog, N), as is the storage requirement. This method may be attractive for 
2-dimensional problems, certainly if tailored for a computer with vector capabilities 
or parallel processors. However, in three dimensions, the number of points 
increases on progressively coarser grids. For example, starting from a 8 x 8 x 8 grid, 
one would go to three grids of sizes 4 x 8 x 8, 8 x 4 x 8, and 8 x 8 x 4, respectively, 
thus increasing the number of points by $. Proceeding to still coarser grids will 
result in excessive storage and operations requirements. The method is clearly 
useless in three dimensions. 

2.2. An O(N) Method 

The.complexity can be reduced to O(N) by choosing the sequence of grids shown 
in Fig. 1. Starting from 8 x 8, semi-coarsening produces a 4 x 8 and a 8 x 4 grid, just 
as in the previous approach. On the next level, however, the 4 x 4 grid combines 
information from both liner grids. This method requires a modification of the 
standard multigrid algorithm to account for the redundancy when similar informa- 
tion from different grids is combined. Before discussing this, we will present com- 
plexity estimates for the method. 

Let the finest grid have Ni = 2”’ points in the x-direction and N, = 2M2 points 
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FIG. 1. Arrangement of finest (8 x 8) and coarser grids, that leads to an O(N) multigrid method for 
problems with alignment. The level numbers are given on the right. The arrows indicate how the grids 
are linked by restriction (downward) and prolongation (upward). 

in the y-direction, resulting in a total of N= Nr N2 points. The level number L 
corresponding to this grid is defined by L = log,(N, N2) = M, + Mz. The set of 
grids corresponding to the finest grid consists of grids with size 2m1 x 2”*, where 
0 <ml GM, and O<m, < Mz. For each integer pair (m,, mz) there is one grid, 
and the total number of grids is obviously (M, + l)(M, + 1). Each grid (m,, 4,) 
is linked to at most four grids (m, f 1, m2 f l), two finer (+ 1) and two coarser 
(- 1). Less than four links occur if m, f 1 or m2 f 1 lies outside the domain of m, 
and m2, respectively. 

The set of grids can be thought of as a lattice spanned by the integer pairs 
(m,, m,), with O<m, <MI and 06m2 GM,. Figure 1 illustrates the case 
M, = M2 = 3. For a given level number 1, with 0 < I< L, the associated grids 
(m,, m2) are defined by ml + m, = 1. The total number of points on all grids is 

9 T 2”‘2”2=4N(l -2-+‘)(l -2-Mz-1)<4~. (2-l 1 
ml=0 m*=O 

For large M, and M2, we need 4N points, i.e., four times the amount of storage 
required for the finest grid. The amount of work involved in a V-cycle is of the same 
order. Thus, we have an O(N) cost per multigrid cycle, as in the usual multigrid 
approach. 

A general multigrid cycle involves y multigrid iteration with respect to a given 
grid. A “V-cycle is obtained for y = 1, a W-cycle for y = 2. The cost of a cycle is 
approximately proportional to the number of points on each grid multiplied by the 
number of times that grid is visited. For a problem in d space dimensions, the finest 
grid has N = N, N2 . . . Nd points. The cost of a multigrid cycle is roughly propor- 
tional to 

MI M‘i 

c c 
. . . 2m,+m2+ . ..+rnd M,+ . ..+Md-.,,- .__- md Y (2.2) 

m,=o md=o 
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For a V-cycle (y = l), we obtain 

2dN fi (1-2-“‘P1)<2dN, 
i=l 

which is the same as the total number of points on all grids. For a W-cycle (y = 2), 
the result is 

2dN f) (1 + MJ. 
i= I 

As Mi = log, Ni, the O(N) complexity is lost. 
If a V-cycle does not solve the coarse-grid problem suflkiently well, an F-cycle 

can be used. This type of cycle is defined recursively as a y = 2 multigrid cycle, in 
which the first multigrid iteration is an F-cycle and the second a V-cycle. The cost 
of an F-cycle can be estimated by 

mgo -.mg2 ml+...+md(l+M1 + . . . +&f,-m, - . . . -md) 
.fI (1-2-M’-’ 
r=l )I 

< (1 + d) 2dN. (2.3) 

We conclude that the proposed multigrid method has an O(N) cost per multigrid 
cycle if a V- or F-cycle is used. 

In this example we have used a finite-volume discretisation on a 2”’ x 2”‘* grids. 
For finite-difference discretisations, the number of points in each co-ordinate direc- 
tion has to be increased by 1, i.e., we would have grids of size (2”’ + 1) x (2”2 + 1). 
The above results carry over in a straightforward manner to this situation. 

2.3. Restriction and Prolongation 

The restriction and prolongation operator for the method described above can 
be chosen in the same way as for a normal multigrid method that employs semi- 
coarsening. Only if data from more grids are to be transferred to one grid, does a 
modification have to be made. This modification is the crucial part of the present 
method. The description here is based on the full approximation storage (FAS) 
scheme [2] for the nonlinear system of equations Y(u) =f: The reader is assumed 
to be familiar with the details of the FAS scheme. The algorithm for linear 
equations follows from the nonlinear case in a straightforward way and will not be 
discussed here. 

We start with the restriction operators. As mentioned in Section 2.2, a grid is 
uniquely defined by (m,, m2). The current solution on that grid is denoted by 
u@“~~~*), and the corresponding residual by rCml+*) = f(m*+2) - LZ@~*~*)( ~(“‘l*~*)). Let 
the restriction operator be denoted by R for the residual and by i? for the solution. 
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The initial solution on a coarser grid (m,, m2) on level I = m, + m2 is found as the 
restriction of one or two solutions on level I+ 1, depending on the number of links 
to finer grids (cf. Fig. 1). Thus, the restriction operators R and R correspond to 
semi-coarsening in the x-direction (R, and i?,), or semi-coarsening in the 
y-direction (R, and R,), or a combination of both. The last is necessary if the 
coarser grid is linked to two finer grids. In that case, we give equal weights to the 
appropriately restricted data from each grid. An algorithmic description of the 
operations involved in restriction from level 1+ 1 to I is: 

for all (m, ,m,)with m, +m, =I,O<m, <M,,O<m, CM, do 
if there are links to (m, + 1, m2) and (m,, m2 + 1) then 

Uhm2) := f [~xU(ml + l,m2) + fi 
YU 

(ml,m2+ 1) 1 
T(“1sm2) := 4 [Rxr(W+ l>m2) + Ryr(Wm2+ “1 _ rhm2)(u(ml,m2)) 

else if there is only one link to (ml + 1, m2) then 
Uhm2) := ~,pl+ km21 

.@,m2) := Rxr(W + km2) _ r(ml.m2) (ml>m2) 
(u ) 

else if there is only one link to (ml, m, + 1) then 
pl.m2) := jj 

YU 
(m,mz+l) 

T(ml.m2) .- Ryrhm2+ 1) _ rh~2)(u(~l.~2)) 
.- 

end if 
end do 

The resulting coarse-grid problem becomes 

(2.4) 

37~ml.m2)(pl.m2)) +ml.m2) + pwn2)~ 

Here the solution zi(m1*m2) can be determined approximately by a multigrid cycle 
with respect to the grid (ml, m2), or by a single-grid solver if this grid is chosen to 
be the coarsest. 

The basic difference with the standard multigrid approach is the occurrence of 
two links to finer grids. We have chosen equal weighting of data from the two grids. 
If z&“- ‘vM2) and u(“‘,M2- ‘) have been obtained directly by restriction from the 
finest grid (M,, M2), then 

pf- LM2- 1) = $[RJ, + I,j?J pw42)~ 
(2.5) 

A similar expression is obtained for the restriction of the residual. For common 
choices of the restriction operator, such as nine-point restriction or volume- 
weighted restriction, we have i?, 
same expression as when ii, 

= fi,R, = w,R,, implying that (2.5) results in the 
is applied directly. The same is true for all coarser 
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grids, that is, (2.4) produces the same result when going from the finest grid 
(M,, M2) to any arbitrary coarser grid (m,, m,), as one obtains by selecting an 
arbitrary path between these two grids and applying only i?, or 8,. In practice, the 
solution will be modified on each grid before it is restricted to still coarser grids, 
and this equivalence disappears. 

The prolongation operator brings corrections from one or more coarser grids to 
the current grid. We choose the following approach: 

for all (m,,m,) with m, +m,=l,O<m, <M,,O<m,<M, do 

u( mlsm2) := lp(U(w.m2), fh~2), cpw2)( .)) 

if there is a link to (m, - 1, ml) then 
Uhm2) := Uhm2) + px[U(ml - l.m2) _ j?xUhm2q 

end if 
if there is a link to (m,, m2 - 1) then 

Uhm2) := Uhm2) + pJuhm2- 1) _ j?yuhm2q 

end if 
end do (2.6) 

Here we have included vP parallel smoothing steps with some relaxation scheme 
Y. Next the one or more coarse-grid corrections are added to the solution on the 
current grid (m,, mz). The fundamental difference with standard multigrid is that 
the corrections are always computed with respect to the restriction of the most 
recent solution rather than the one at the begin of the multigrid cycle. Choosing the 
x-direction first in (2.6) results in an asymmetry of the algorithm with respect to the 
co-ordinate directions. In the actual code described in Section 4, this asymmetry is 
reduced by alternating the order of prolongation in x and y each time (2.6) is 
carried out. 

The restriction operator (2.4) uses equal weights when more than one liner grid 
exists. The prolongation operator (2.6) can also be expressed in terms of weights: 

U(m~,m2) := [pyU(w3m2- I)]+ (I- py~y)[pxU(ml-l,m2)] 

+ (I- P,R,)(Z- PJ,) 

)( [~%7(Uh~2), fh”“, pmw)( .))I (2.7) 

This shows that the weight for the first term on the right-hand side is Z, for the 
second (Z-P,&), and for the third (I- P,,$,,)(Z- P,i?,). Because P,& and 
P,,i?, approach Z for the low frequencies, the low-frequency component of the new 
solution is mainly determined by P,,u (ml.m2-1). This preference with respect to one 
co-ordinate direction can be reduced by the alternating approach mentioned above. 
Thus, the next prolongation would result in an expression similar to (2.7), but with 
x and y interchanged. 
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In addition to the above parallel smoothing, one can perform v1 pre- and v2 post- 
smoothing steps, just as in the standard multigrid method. This completes the 
description of the new method. 

Before we continue with the discussion of a specific application of the method, we 
like to point out that the choice of weights in (2.4) and (2.7) is convenient and 
simple, but not necessarily optimal. If these restrictions and (alternating) prolonga- 
tion operators are used, no bias with respect to co-ordinate directions is introduced. 
Given the nature of the differential operator, which was assumed to be strongly 
biased with respect to one of the co-ordinate directions, it appears that a similar 
bias in the restriction and prolongation operators could give better results than the 
approach chosen here. These weights might possibly be based on norms of the 
residual on various grids, and on the associated convergence rates. The weights in 
(2.7) involve restriction and prolongation operators. One could include the differen- 
tial operator if it is sufficiently simple. In addition, restriction to certain grids may 
skipped if there is only very weak coupling in the direction of coarsening. This is 
a viable option if the flow has a dominant direction throughout the computational 
domain and should save a substantial amount of work. Such variants remain to be 
explored. 

Finally, we remark that the present method is not able to handle alignment at 
45” with respect to the grid-lines. The discretisation used in the following sections 
does not recognise this as a special case and introduces sufficient numerical ellip- 
ticity to avoid the problem. Hackbusch [S] describes a parallel multigrid method 
which can handle alignment at 45” for certain simple problems. The price paid is 
a (sequential) complexity of O(N log N). 

3. TWO-LEVEL FOURIER ANALYSIS FOR THE EULER EQUATIONS OF GAS DYNAMICS 

The method sketched above is applied to the Euler equations of gas dynamics 
that describe the flow of an ideal compressible gas in the limit for vanishing 
viscosity. In conservation form, these are: 

a”+as+ag=, 
at ax ay . (3.la) 

The vector of states w and the fluxes f and g are 

Here p is the density of the gas, and u and u are the X- and y-components of the 
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velocity, respectively. The energy E, total enthalpy H, pressure p, and sound speed 
c are related by 

H=E+;, &yP. 
P 

(3.2) 

This system of four equations is discretised by upwind differencing, yielding solu- 
tions of first-order accuracy. 

The convergence of the multigrid method can be estimated by linearising the 
equations (3.1), assuming the coefficients of the linearisation to be constant, and 
imposing periodic boundary conditions. This allows the use of Fourier symbols for 
the various operators. Then, only two levels are considered, a line and a coarse, and 
it is assumed that the problem on the coarse grid is solved exactly. This procedure 
is followed in [13] for the standard multigrid method. For the present method, we 
choose a finest grid of size N, x N,, where N, = 2M1 and N2 = 2M2 with both M, 
and M, larger than 0. It is assumed that the two coarser grids of size (N,/2) x N, 
and N, x (N,/2), respectively, are solved exactly. 

Here we only sketch the various steps in the two-level analysis. The present case 
is a straightforward generalisation of the work in [13]. The reader is referred to 
that paper for details. 

A linearised form of (3.1) is given by the discrete operator 

L=$[A+(l-T;‘)+A-(T,-l)] 
x 

+$ [B+(l- T,‘)+B-(T, -l)]. (3.3) 
Y 

Here h, and h, denote constant grid-spacings in the x- and y-directions, respec- 
tively. The shift operator TX is defined by T,v~,+~ = vk, + i,kz for a quantity u on the 
N, x N, grid, and TyVk,,kz = ~~,,~~+i. The matrices A * and B* correspond to the 
positive and negative parts of 

These matrices are obtained from df/dw and dgfdw after a similarity transform. The 
construction of these positive and negative parts is described in [13]. In Fourier 
space, the symbol 2 is a function of the frequencies 

8, = 2nl,/N, (I1 = -$N, + 1, . . . . ;N,), 

ey = 27112/N2 (I, = - ;N, + 1, . . . . ;N2). 

The singularities of 2 are listed in [ 133. 

(3.5) 



MULTIGRID APPROACH TO CONVECTION PROBLEMS 313 

The restriction operator is based on volume-weighted averaging of the residuals 
and the solution, implying that 8, = R, = i( 1 + 7’,) and 1, = R, = a( 1 + T,,). 
Prolongation is piecewise constant interpolation. In Fourier space the prolongation 
operators are the complex transposes of the restriction operators. These operators 
are the same as in [9, 131, but are now applied to two cells at the time, rather than 
four. The operator 1, introduces a coupling between 8, and 0, + a, and &,, 
between 8, and 8, + n. It is therefore convenient to consider the four frequency 
pairs (O,, e,,), (0, + nn, O,), (O,, BY + K), and (0, + 71, OY + 7~) simultaneously. With 
four equations, this requires 16 x 16 complex matrices in Fourier space. We omit 
the expressions for the symbols of the restriction and prolongation operators here, 
and merely outline the construction of the two-grid operators. 

Let the linearised problem be given by L (~13’f2)~(% M2) = f@fl, MZ), the fight-hand 
side not to be confused with the flux in (3.lb). In terms of the error u(~‘,~*)= 
z?“~~) - u(~‘,~~), which is defined as the difference between the converged solution 
U(M1*Mz) and the present guess, the relaxation operator is given by @“1*M2) := 
S(M1*“‘2)~(M1,*Z). The coarse-grid correction operators for the x- and y-directions are 

K, = Z - p,( Lc”l - ly”2))t R,, 

KY = Z- Py(L(MI.M2- l))f R,,. 
(3.3) 

Here we have dropped the superscript (M,, M,). The dagger indicates the pseudo- 
inverse. The two-grid operator corresponding to (2.4) and (2.6) is given by 

My = P[K, + (I-P,R,,K, + (I- Pyj?J(Z- P,a,)(sv~- Z)]SYl. (3.4) 

The expression for M, is obtained by interchanging x and y in (3.4). The corre- 
sponding two-grid convergence factors are 

A, = p@A,L+), )1, = p(2tiy2t). (3.5) 

Here p( .) denotes the spectral radius, which is computed from the Fourier symbols 
of the two-grid operators. A similarity transform based on the operator L is 
included to account for its singularities. See [13] for details. For the Euler equa- 
tions 1, and 1, are functions of u/c, v/c, N, , N,, h,/h,, O,, and 0,. Note that u, 
v, c, h,, and h, are assumed to be constant. The maximum over the discrete set of 
frequencies is denoted by 

and a similar expression is obtained for A,. The asymptotic convergence rate for 
two cycles is 

max p(LtiyfixEt) < max(X,) max(X,) = (max XX)‘. (3.8) 

Here the maximum is taken over all admissible values of the five parameters. 
Because of symmetry, max X, = max 2,. 
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The computation of x,(u/c, u/c, h,/h,, N,, N2) has has been carried out numeri- 
cally. Figure 2 is the result of substantial number-crunching. It shows X, as a 
functions of u and u (c = 1), for h, = h,. Each point represents the maximum over 
the finite set of frequencies that occur for a 64 x 64 grid. The smoother is damped 
point-Jacobi, which is given by 

1 SPJ=I--N-~L 
2 ’ 

N=;(A+ -A-)+++ -B-). (3.9) 
x Y 

This combination of the relaxation matrix N and damping by a factor $ completely 
removes the highest frequencies of 2 (at fX = pY = - 1). For a l-dimensional 
problem, this amount of damping yields an exact solver in combination with multi- 
grid [ 111, and therefore seems to be a good choice for the present method. It 
should be noted that the relaxation matrix N > 0. Zero eigenvalues only occur for 
u = v = 0. In that case, we use the pseudo-inverse in the linear analysis. 

The worst convergence rate observed in Fig. 2 is f, and we conjecture that this 
is also the worst value of 2, for all choices of u/c, u/c, h,/h,, N, B 2, and N2 2 2. 
This statement is based on extensive computations. 

Table I shows some results for three smoothers, the damped point-Jacobi men- 
tioned above, damped red-black, where the damping is carried out in the same way 
as in (3.9), and damped symmetric Gauss-Seidel, with two sweeps in opposite 
directions. For the last, a nonstandard way of damping is employed [13, (6.13)]. 
Although Table I does not give the maximum over all parameters, it suggests that 
damped point-Jacobi is the best choice if only one pre- or post-smoothing step is 
performed. If only parallel smoothing is performed, one might consider red-black 

FIG. 2. Two-level convergence rate 1, as a function of u and v (c= l), for a 64x 64 grid with 
h, = h,, using damped Point-Jacobi smoothing with v1 + v2 = 1, vp = 0. The worst convergence factor 
is i, for u=O and lul =c. 
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TABLE I 

Two-Level Convergence Factors max&) for 
the Damped Versions of Point-Jacobi, Red-Black, 

and Symmetric Gauss-Seidel Relaxation 

Scheme “1 +v2 “P max(U 

PJ 1 0 0.500 
2 0 0.500 
0 1 0.707 
0 2 0.707 

RB 1 0 0.498 
2 0 0.535 
0 1 0.638 
0 2 0.587 

SGS 1 0 0.499 
2 0 0.469 
0 1 0.574 
0 2 0.563 

Note. The results are obtained for fixed N, = 
N, = 64 and h, = h,, and the maximum is taken over 
the values u/c = - 2 + n, 18, v/c = - 2 + n,/8, where 
both n, and nz are integers between 0 and 32. 

or symmetric Gauss-Seidel. It should be noted that red-black smoothing is more 
costly than point-Jacobi, and that SGS is even more expensive in terms of cpu 
time. Increasing the number of smoothing steps from one to two improves the over- 
all convergence factor, but, as seen can be seen from Table I, the worst convergence 
rate is hardly affected. 

4. NUMERICAL EXPERIMENTS ON THE NONLINEAR EULER EQUATIONS 

4.1. Implementation in the Nonlinear Case 

The linear two-level analysis provides an estimate of the convergence rate under 
ideal circumstances. If the method is applied to the nonlinear equations, con- 
vergence may be slower due to boundaries, large variations of solution values with 
respect to grid spacing, and nonlinear phenomena such as sonic lines, slip lines, and 
shocks, which may result in local singularities (cf. [ 111). Another type of singularity 
is created by nonsmooth boundaries or grids. Ideally, the steady state Euler equa- 
tions represent a pure boundary-value problem, with a solution that is identical to 
the one obtained from a time-accurate integration of the unsteady equations from 
arbitrary initial data, as time goes to infinity. Such an ideal situation is the excep- 
tion rather than the rule, a fact one should be aware of when applying the method 
presented here, or any other implicit or Newton-like integration that is not time- 
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accurate and violates conservation in time. A steady state may not exist at all in 
some cases, or, what is more likely, multiple stationary solutions exist. A simple 
example is a shock in a straight channel, with supersonic inflow and subsonic out- 
flow as boundary conditions: the position of the shock is undetermined, if this 
problem is considered as a pure boundary-value problem. Another example is the 
occurrence of regions in the flow where the velocity vanishes: for zero velocity and 
constant pressure, any density distribution will be steady. Stationary vortices are 
another problem. If multiple solutions exist, a steady-state solver may pick one that 
is unphysical, in the sense that it cannot be reached from any initial data, or that 
is unstable in time against small perturbations. 

If the boundary-value problem has multiple solutions and a certain steady-state 
solver finds a stationary solution, then the solution may depend on the solver; that 
is, certain solvers may be unable to reach particular solutions. The solution will 
also depend on the discretisation scheme. In the case of zero velocity and constant 
pressure, for instance, a large amount of isotropic numerical viscosity will cause the 
solution to have constant density, which is not required by the differential equation. 
In general, it appears that Euler solvers provide acceptable results only because of 
numerical viscosity, where acceptable means that the results resemble the solution 
of the Navier-Stokes equations for small viscosity and thermal conductivity. 

Bearing the above in mind, it is only reasonable to require fast convergence if the 
steady state is well defined. If convergence down to machine zero is desired, then 
the discrete equations should be sufficiently smooth around the steady state, 
otherwise the iterative process may end up in a limit cycle. For practical purposes, 
convergence to machine zero is a waste of time, but on the other hand, a limit cycle 
may prevent convergence to a solution within the accuracy of the discrete scheme, 
and it is therefore recommended to use smooth discretisations. The initial guess of 
the steady state is also important for fast convergence. It is usually obtained by 
successive grid refinement [2,4]. A solution is computed on a coarse grid and 
interpolated to a finer one to obtain a good initial guess. In this way one needs 
a fixed number of iterations per grid to obtain a steady state in O(N) operations. 
Computing the first solution on the coarsest grid may be a problem in itself. One 
can use time-stepping if necessary. Sometimes, the solution may change drastically 
when one goes to a liner grid. In that case, some type of continuation technique can 
be used. The initial guess can be obtained from a solution on the same finest grid, 
computed for a slightly different shape of the boundary, or slightly different 
boundary conditions. 

We now turn to the details of the present scheme. The system of four conserva- 
tion laws (3.1) is discretised by upwind differencing, using either van Leer’s flux- 
vector splitting (FVS) [21] or Osher’s scheme in the natural ordering [6, 15,161. 
Both are sufficiently smooth for our purpose. A disadvantage of van Leer’s scheme 
is its failure to recognize slip-lines and contacts. These are smeared out by the 
scheme. The reason is that van Leer’s FVS does not have the proper eigenvalues. 
This may also cause problems at boundaries. 

The vector of state quantities w is represented by cell-averages w~,~ on a grid 
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consisting of arbitrary quadrilaterals, the four corners of which are denoted by 
(i- $,j- i), (i+ +, j-a), (i+ f, j+ $), and (i- $, j+ i), and the corresponding 
sides by (i, j - $), (i + f, j), (i, j + $), (i - 4, j). This configuration is sketched in 
Fig. 3. The discrete residual is 

ri,j = -si, j- 1,2 T 7. r,i- lpf(T<j- 1/2w<j, Ti,j- 1/2wi,j-l) 

-Si+,/*,jT~~1/2,jf(Ti+1/~,jwi,j, Ti+l/2,jwi+l,j) 

-Si,j+1/2Ti,j:r/2ftTi,j+1/2wi,j, T<j+1/2wi,j+1) 

-~i-,/2,jT,~'l,2,jf(Ti-l/2,jwi,j, Ti- 1/2,jwi-1.j * ) (4.1) 

Here f(w,, w,) provides an approximate solution to the Riemann problem, through 
one of the two upwind schemes mentioned above. The first rotation matrix is given 
by 

Ti,j- 112 = O ! 0 0 1 
cos $i, j- l/2 

-Sin#i,j-l/2 0 0 
sin 4i, j- 1/2 

COS#i,j-112 0 0 
0 

0 0 1 i ’ 
(4.2a) 

where 

cos di, j- l/2 = 
Yi+ 1/2,j-112 - Yi-1/2,j-l/2 

3 
si, j- l/2 

sin di, j- r/2 = - xi+ l/2, j- l/2 -xi- 1/2,j- 112 
7 

si, j- 112 
(4.2b) 

si,j-1/2 = C(xi+1/2,j-11/2 -xi-1/2,j--1/2)2 + (Yi+1/2,j-l/2 -Yi-1/2,j-11/2)21”2. 

Here the outward normal is (cos $i,j-l,2, sin 4i,j-l/2)T. The rotation matrices for 
the other sides follow in a similar way. 

(Li) I I 
(i+1/2.j) 

(i-1/2,j) 

FIG. 3. Quadrilateral cell (i, i) of the computational domain showing the numbering of sides and 
vertices. 
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Given this discretisation, the next problem is to find a proper generalisation of 
the damped point-Jacobi smoother (3.9). The standard procedure for nonlinear 
equations is to apply Newton’s method to solve wi , from (4.1), keeping neigh- 
boring states fixed. Since only smoothing is required, one Newton iteration is 
usually sufficient [4]. The damping is applied afterwards. 

With van Leer’s flux vector-splitting, this is a feasible approach. In that case, the 
flux f( wI, w,) is split as follows: 

f(Wh wr)=ff(w,)+f-(w,), ---j-y, ) 
df+(w,) > o & (wr) < o, -&---, (4.3) 

I r 

The actual expressions for f’ and f-- can be found in [21]. If Newton’s method 
is used as part of the smoother, then we need -ari,j/awi,j. The first term on the 
right-hand side of (4.1) contributes 

a:. T- - I,:- 1/2.f(Ti,j-1/2Wi,j, Ti,j- 1/2Wi,j- 1) ‘4 
=TI&~Ti,j-I,2, fi= Ti j-1/2wi,j. 

Because positivity is preserved under a similarity transform, and the sum of positive 
matrices is positive, we conclude that for van Leer’s flux-vector splitting, 

To avoid problems with zero eigenvalues, we add a small constant to the main 
diagonal, that is, 

where l/At is chosen proportional to the norm of the residual (see Eq. (7.2b) in 
[ 133). If only one Newton step is performed, the solution is updated according to 

wi, j := wi, j + + iVrjl ri, j. 

With Osher’s scheme in the natural ordering, this positivity is lost. Only if 
w1 is close enough to w,, we have af(wl, w,)/aw, 2 0. In general, the matrix 
Ni,j = -ari,j/iYwi,j may have eigenvalues that are negative, or even complex. This 
may lead to disastrous results. It is quite surprising that the authors of [6] obtained 
fairly good results with this approach. A particular source of trouble is a hard wall. 
In [6], the flux at a vertical wall at the right side of a cell is computed by fs = 
(0, pe, 0, O)T, where the pressure at the boundary is determined from characteristic 
variables: 

pe =r(cB/c)2’(yP1), pB =p&/y. (4.8) 
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The same result is obtained if a mirror zone with reflected states is introduced at 
the other side of the wall (same states, but the normal velocity gets a minus sign), 
and the Riemann problem at the wall is solved by Osher’s scheme in the natural 
ordering-but only if the normal velocity is subsonic. If one takes the Jacobian of 
the wall flux, and if the wall is not perpendicular to the other sides of the cell, then 
the contribution to the relaxation matrix may be negative, even if no strong 
gradients are present. In the numerical experiments described below, our code 
started to produce nonsense if one cell had non-parallel walls on both sides and the 
flow was close to supersonic. 

To avoid this problem, we choose an inconsistent linearisation. Instead of the 
proper Jacobian, we use 

Tr? *,,-1/zA+(~i,,)Ti,j-l/~, @i,j = Ti,j- l/zWi,j (4.9) 

for the first side of the quadrilateral and similar expressions for the other sides. 
Here A + is determined from A = af(w) by selecting the positive eigenvalues: 

max(u - c, 0) 0 0 0 

A+ =Q-1 i 0 max(u, 0) 0 0 
0 0 max(u, 0) 0 

QV (4.10a) 

0 0 0 max( u + c, 0) 

1 

where l 1 0 1 1 

Q= 
u-c 0 u U+C 

V 1 V v * 

H-UC v gu2+v2) H+uc i 

(4.10b) 

In this way, Ni, j > 0, and the modification (4.6) avoids zero eigenvalues. 
The boundary conditions at a hard wall are implemented by means of a mirror 

cell with reflected states and using the approximate Riemann solver in the same 
way as in the interior. In computing A +, the dependence of the mirror states on the 
interior states is ignored. At open boundaries, we determine states on the exterior 
side of the boundary by selecting l-dimensional characteristic variables either from 
free-stream values or from the interior, according to the sign of their corresponding 
eigenvalues. Then the approximate Riemann solver is used to determine the flux 
across the boundary, in the same way as in the interior. The dependence of the 
exterior values on the interior ones is ignored when the Jacobians are computed. 

It is not clear a priori if damping should be used at the boundaries or not. In 
assembling the relaxation matrix N, one may include the damping right away; that 
is, one assembles $N rather than N. At boundaries, one might suppress the damping 
by including the full contribution from the side of the quadrilateral that coincides 
with the boundary, rather than half of it. Analysis for the l-dimensional scalar 
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equation U, + au, = 0 shows that for point-Jacobi it is better to include damping at 
open boundaries. Thus, an open boundary (inflow or outflow) is treated in the 
same way as the interior. The numerical experiments described in the next section 
indicate that it is slightly better to use the damping at hard walls as well. In brief, 
the construction of N at the boundaries is identical to its construction in the 
interior of the computational domain. 

4.2. Experiments 

As a test problem we consider flow through a channel with a circular arc at the 
bottom, with subsonic, transonic, and supersonic steady solutions. The grid is 
shown in Fig. 4a. It is practically equidistant in the y-direction and also in the 
x-direction across the bump. Constant stretching has been applied in the horizontal 
direction away from the bump. The finest grid use in the computation is actually 
128 x 64, but that is too tine to be displayed without Moire patterns. The dimen- 
sions of the grid are 5 by 2, with the circular arc between 1.5 and 2.5, having a 
thickness of 4.2% of the chord [17]. 

The multigrid solver uses a coarsest grid of 4 x 2 cells. The equations on the coar- 
sest grid are solved by four sweeps of (undamped) symmetric Gauss-Seidel. The 
multigrid technique is implemented as a full approximation storage scheme [2], 
and the initial guess is obtained by successive grid-refinement. An F-cycle is used to 
solve the equations on each grid. For problems with shocks, it is recommended to 
have post-smoothing. The reason is that the coarse-grid corrections can be large 
around the shock, if the shock is in the wrong position. These large corrections 
introduce large high-frequency errors that have to be removed immediately by post- 
smoothing, otherwise the entire multigrid process will go astray. On the basis of 
Table I we choose one post-smoothing step with damped point-Jacobi. 

On the finest grid, one smoothing step is sufficient in smooth regions of the flow, 
but not near shocks, where the coarse-grid correction may introduce 0( 1) high- 
frequency errors. Therefore, one additional local relaxation step with (undamped) 
symmetric Gauss-Seidel at 4 x 4 cells around the largest residual is performed at the 
end of each cycle (cf. [ 111). This requires hardly any extra work and improves the 
overall convergence rate substantially in some cases. Because an F-cycle is used, 
smoothing is applied more than once on the coarser grids. In the experiments done 
here, local relaxation does not appear to be necessary on the coarser grids, 
although in general it may be. 

Local relaxation is also helpful after grid refinement. In that case we use third- 
order interpolation (see [ll]). At shocks, and also near non-smooth parts of the 
boundary, large local errors may occur, that are easily removed by local relaxation. 
Again we use only one symmetric Gauss-Seidel sweep on 4 x 4 cells. 

The results shown in Figs. 4b-d have been obtained with an F-cycle. The finest 
grid has 128 x64 cells, the coarsest grid 4 x 2. Convergence rates for the cases 
shown in Fig. 4 vary between 0.3 and 0.4, well below the worst value predicted by 
the two-level analysis. These results are obtained both for van Leer’s flux-vector 
splitting and Osher’s scheme in the natural ordering. For the first, a consistent 
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bc 

FIG. 4. (a) 64 x 32 grid used in the computations. The bump at the bottom at the channel has a 
thickness of 0.042. Inflow is from the left, outflow to the right. The results shown in the following figures 
are obtained on a 128 x 64 grid. (b) Iso-Mach lines for math 0.5 inflow. Contours are 0.01 apart 
(first-order Osher scheme). The asymmetry gives an indication of the low accuracy of the first-order 
scheme. (c) Iso-Mach lines for math 0.85 inflow. Contours are 0.025 apart (first-order Osher scheme). 
(d) Iso-Mach lines for math 1.4 inflow. Contours are 0.025 apart (first-order Osher scheme). 
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linearisation (4.4) is used for the relaxation matrix fi (4.6), except near boundaries 
where the dependence of the exterior quantities on the interior states is ignored. For 
Osher’s scheme, the inconsistent linearisation (4.9) is adopted. 

An initial guess of the steady solution is obtained by the nested iteration techni- 
que [S], which is known as full multigrid when used in combination with a multi- 
grid solver [Z]. Here we first perform a fixed number of cycles on a 8 x 4 grid, then 
interpolate the solution by piecewise linear interpolation to a 16 x 8 grid, again per- 
form a fixed number of multigrid iterations, and so on. Note that, for this nesting, 
the number of cells is doubled in both co-ordinate directions at the same time. 
According to [4, Eq. (5.2.9)], one or two cycles should be sufficient to obtain a 
solution with an iteration error of the same size as the discretisation error. In the 
presence of shocks and non-smooth boundaries, more iterations may be required to 
prevent large local iteration and discretisation errors from contaminating the rest of 
the solution. In the experiments, we stopped iterating if the L, norm of the actual 
residual dropped below & of the L, norm of the residual at the begin of the itera- 
tions. This generally took about six multigrid cycles and produces results with an 
iteration error well below the discretisation error. 

It should be noted that the solutions obtained in this way have only first-order 
accuracy. Higher order accuracy is desirable for practical applications. This will be 
considered elsewhere [ 141. 

5. CONCLUSIONS 

A new multigrid method for problems with alignment has been presented. Its 
complexity is O(N) if a V- or F-cycle is used. The method has a fair amount of 
parallelism, due to the use of several coarser grids on the same level of coarseness, 
and the optional use of smoothing parallel to the computation of the coarse-grid 
correction. This parallelism has not been explored in this paper. 

Because the method combines data of more grids into one, the standard restric- 
tion and prolongation operators had to be modified. The chaise of restriction and 
prolongation operator presented here is convenient, but it may be possible to 
obtain better convergence rates with other choices. 

The application to the Euler equations of compressible gas dynamics shows that 
the method has uniformly good convergence rates, both in the linear two-level 
analysis and in the nonlinear subsonic, transonic, and supersonic experiments. With 
damped point-Jacobi used for post-smoothing, the two-level analysis predicts a 
worst convergence factor of 4, whereas the numerical experiments provide values 
between 0.3 and 0.4. 

EPILOGUE 

The present work has been inspired by ideas on parallel multigrid. The numerical computations for 
the two-level analysis were carried out on the four processor Alliant at the Department of Computer 
Science at Stanford University, and on the 32 processor Ncube at UCLA. The nonlinear experiments 
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were performed on a SUN 3/110 work station at UCLA. Figure 1 has been typeset in Tax, Fig. 2 is 
drawn by the NCAR-graphics package, Fig. 3 has been composed in PostScript, and Figs. 4a-d have 
been produced with the package NUTOIS, written by Tom Smedsaas from the Department of Scientific 
Computing at Uppsala University. 
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